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A large, national, mathematics data base, the Australian Mathematics Competition [AMC],
is used to investigate the appropriateness of curriculum content for different groups of
students. The cross-sectional comparisons afforded by the data enable characteristics of
mathematical problems found easy and difficult by “average” and “able” groups of students
at different grade levels to be identified. Gender differences in performance on the papers are
also explored.

Mathematics is well known to be a critical filter for many educational and career

opportunities and is widely regarded to be a key component of the school curriculum. Yet

problems with mathematics and science studies at school and university level have been

highlighted by diverse groups, including teacher and parent organizations, business and

professional bodies (see e.g., Committee for the Review of Teaching and Teacher

Education, 2003; Dobson, 2003). Politicians, too, have turned their attention to student

performance in mathematics and science. For example, within days of taking up her

appointment as federal minister for education, minister Julie Bishop indicated that she

“was concerned about the level of support in some schools in subjects … (including)

maths” (Topsfield, 2006, p 9) and argued that more curriculum support for teachers was

needed. Boosting “the number of students studying maths and sciences at school and

university” was listed as a high priority by the Federal education opposition

spokeswoman, Jenny Macklin, who further noted that “the number of students studying

maths in Year 12 had declined by 4420 since 2001 alone” (Topsfield, 2006, p. 9). Is

inappropriate curriculum content — work that is too easy or too difficult - responsible for

the drift away from mathematics and the physical sciences? Is there evidence that, as

argued by Gross, “in every class of 30 students there would be at least two or three who

could work about three years beyond their age” (cited by Ferrari, 2006, p. 1)? Questions

such as these motivated the investigation described in this paper. Specifically, data from

the Australian Mathematics Competition for the Westpac Awards [AMC] - a large,

national, mathematics data base — are used to explore the suitability of curriculum content

for secondary school students with different mathematical abilities. Given the continuing

interest within and beyond the mathematics education research community of possible

gender differences in mathematics learning outcomes, the data are reported overall and

separately by gender.

Previous research

Curriculum Issues

Much has been written about students’ reasons for continuing with mathematics once

the subject is no longer compulsory. Pragmatic grounds were given at the beginning of this

paper: mathematics serves as a gate keeper to many courses and careers, and this is

emphasized in various Department of Education, Science & Training publications (see e.g.,
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Web sites such as jobguide.dest.gov.au; dest.gov.au/sectors/careerdevelopment;

myfuture.edu.au).

In their study of talented teenagers, Csikszentmihalyi, Rathunde, and Whalen (1993)

found that immediate and long term extrinsic rewards, enjoyment from working with

mathematics, and functional support from school and teachers were pivotal for the

development of mathematical talent and student persistence with mathematics. Capable

mathematics students thrived on appropriately challenging activities and materials.

Working with students in a selective accelerated grade 9 class in a school in the

metropolitan area of Melbourne, Landvogt, Leder and Abbott (2001) similarly reported

that students valued being given more challenging work in their mathematics (and English)

classes. Yet Barrington and Brown (2005) have argued that “(t)eachers are well aware that

if students perceive a subject to be too difficult, they will avoid it in favour of one they

believe they can cope with (p. 21). Determining appropriate curriculum content involves

balancing students’ needs and capabilities.

Writing about the educational environment in the United States, Willoughby (2000)

noted the increasing trend for state and local communities to specify the mathematics

curriculum content to be covered at each grade level in schools under their jurisdiction.

Barrington and Brown (2005) described a similar situation in Australia. “Pre-tertiary-

entrance mathematics subjects across the Australian States and Territories vary

enormously, with differences in philosophy, mathematical content and assessment so great

no two States’ Year 12 mathematics subjects could be described as equivalent” (p. 4).

Nevertheless, inspection of curriculum documents reveals much overlap in the broad goals

found across countries and settings. Invariably students are expected to master the basic

and higher order thinking skills of mathematics and to travel a journey that allows them to

cope with increasingly difficult mathematics problems. Different theoretical frameworks

and terminology have been used to portray increasingly sophisticated levels of student

thinking — among them Bloom’s (1956) taxonomy of educational objectives and the

Structure of Learning Outcomes or SOLO taxonomy (e.g., Biggs & Collis, 1982). These and

similar taxonomies can also track expected progressions embedded in curriculum guidelines

specified in different educational settings.

Gender Differences and Mathematics Learning

Gender differences in mathematics learning have attracted much attention, from

researchers, practitioners, and policy makers. In recent years evidence of gender differences

in performance has become more equivocal, with females at times reported, and perceived,

as outperforming males (Cox, Leder, & Forgasz, 2004; Forgasz & Leder, 2000). Indeed, at

times it has been argued that intervention programs aimed at improving mathematics

learning for females have been so successful that males, as a group, should now be

perceived as disadvantaged: in terms of educational participation, adjustment to schooling,

and achievement in most subjects - including mathematics (Department of Education,

Science and Training, 2003; Freeman, 2004). Exploration of gender differences in

mathematics achievement is addressed in this paper by comparing the average performance

of females and males on the AMC papers as well as the performance of the best students,

i.e., the top 2% of performers on these papers.
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The Study

Three separate AMC papers are set for secondary school students: the Junior,

Intermediate and Senior papers for students in grades 7 and 8, grades 9 and 10, and grades

11 and 12 respectively. Each of these contains unique questions as well as some which

appear on at least two papers. Thus there are questions which are attempted by students

at four different grade levels. Drawing on these items it is possible to identify:

• Problems on which the best students, defined here as those in the top 2%, already

reach maximum performance in grade 7 but other students, on average, show

increasing mastery with increasing grade level,

• Items on which the performance of all students — those of the group as a whole

and those in the top 2% - improves with grade level, and

• Questions on which the performance of only those in the top 2% increases with

grade level.

Hence, through the cross-sectional comparisons afforded by the data base,

characteristics of mathematical problems found easy and difficult by different groups of

students in different grade levels can be identified.

As already foreshadowed, the AMC data are also used to explore whether:

• There are gender differences in the performance of those who enter the AMC,

overall and for those who comprise the top 2% of students.

A brief description of the AMC is given next to gauge its relevance to the curriculum

content in the various Australian states.

The Australian Mathematics Competition

The first AMC was conducted in 1978, with 60,000 students from 700 schools —

including about 900 students from 15 New Zealand schools - entering the competition. By

2004 over 340,000 students from more than 2450 schools throughout Australia

participated in the AMC, i.e., about one-quarter of Australia’s secondary school students.

Students from an additional 40 countries (approximately) also took part.

There are now five separate papers in the AMC. Collectively these cover the school

years from grade 3 to grade 12. Only the data for students in grades 7 to 12 are relevant for

this paper.

The AMC’s organisers aim to give “average” students a sense of achievement as well as

rewarding outstanding performance. The top 50% of entrants at each participating grade

level (grades 7 to 12), and within each state, gain special recognition. Medals are awarded to

the highest performers (.01% of entrants) and the top approximately 0.3 % of students

within their geographic region and grade level are awarded a Prize. Those in the top 2% of

their grade level and geographic region and who have not received another award are

awarded a High Distinction, Distinctions are given to students in the top 15% of their grade

level and geographic region and who have not received a higher award, and Credits to

students in the top 50% of their grade level and geographic region and who have not

received a higher award. A Participation Certificate is given to students who have

participated in the AMC but have not received a higher award.

Over time the scoring system has been modified so that in recent years, including for

the 2005 AMC papers, incorrect answers have not attracted a penalty.

Throughout the Competition’s existence, the AMC papers have been devised by a
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committee drawn from experienced teachers and university academics to measure

achievement in mathematics. The Junior, Intermediate, and Senior papers each contain 30

questions, 25 of which are multiple-choice. The questions are graded and comprise a

balance of arithmetic, algebra, and geometry problems with which students should have

classroom experience, and problems of a general nature which require a synthesis of

mathematical skills for their solution.

Much of our paper is familiar to the average student, and all the mathematics is checked for meeting
the various syllabi in Australia and New Zealand. We also try to challenge students of all standards.
The earliest questions are accessible to all students, while the questions get progressively harder.
(Taylor, 1993, p. vi)

The consistently high student participation rates are clear testimony to the perceived

trustworthiness of the AMC and the value assigned by schools, teachers, and parents to

the competition.

Method

Selecting the Data

As noted before, each year there are a number of questions which appear on more than

one paper. Seven items were common to the 2005 Junior and Intermediate AMC papers;

11 items appeared on both the Intermediate and Senior papers. Out of these, one question

appeared on all three papers and could thus be attempted by students at all six grade levels.

Details are shown in Table 1.

Results

The total group

Two further sets of information are shown in Table 1. For each grade, the percentages

of students who obtained the correct answer on the common questions are provided as well

as the percentage of females among each such group.

The common items, it can be seen from Table 1, cluster into three groups:

• Those on which there is virtually no change (less than 10%) over increasing grade

level in the performance of students, i.e., items J9/I3, I14/S13, I17/S14, J24/I18,

I22/S18, I23/S22, J25/I24, I26/S26, I29/S28, and J30/I30/S30. With the exception of

J9/I3, which most students could already handle in grade 7, these items proved

consistently difficult: at most one-third at each grade level solved them correctly,

• Those on which students showed some improvement (up to 20%), with increasing

grade level, i.e., items I8/S5, J12I/9, I10/S8, I21/S16, and

• Those on which students showed a steady and substantial improvement (20% or

more) with increasing grade, i.e., items I7/S3, J13/I11, and J14/I6. At least 40% of

the groups answered items in the latter two sets of questions correctly.

The percentage of females who entered the AMC at each grade level is also shown in

Table 1 (see the last row). Males consistently outperformed females, with item 17 on the

Intermediate paper the only exception.
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Table 1

Students’ Performance on Common Items, by Grade Level and gender4.

Division & Item Grade: % correct total group and (F as % of correct

respondents in that group)

J1 I2 S3 7 8 9 10 11 12

9 3 89 (47)4 92 (48) 95 (49) 96 (49)

7 3 37 (45) 47( 44) 64 (42) 71 (40)

8 5 32 (50) 36 (49) 42 (46) 45 (42)

12 9 52 (46) 57 (46) 61 (46) 66 (46)

10 8 25 (43) 29 (43) 37 (41) 40 (37)

13 11 31 (45) 37 (46) 47 (48) 55 (47)

14 13 19 (49) 18 (48) 19 (43) 21 (40)

17 14 16 (52) 16 (50) 18 (45) 20 (40)

14 6 34 (45) 40 (46) 47 (46) 53 (46)

24 18 30 (45) 31 (46) 32 (47) 37 (46)

21 16 29 (48) 33 (45) 38 (42) 42 (40)

22 18 24 (49) 25 (49) 26 (46) 25 (43)

23 22 33 (49) 33 (48) 31 (45) 33 (43)

25 24 28 (47) 27 (49) 26 (49) 26 (49)

26 26 3 (49) 3 (47) 2 (45) 2 (43)

29 28 5 (48) 5 (41) 4 (45) 6 (34)

30 30 30 3 (47) 3 (48) 2 (48) 3 (46) 2 (44) 3 (40)

(F as % of Grade

entrants)

(48.5)5 (49.2) (50.1) (49.5) (46.2) (44.0)

1
Junior paper for grades 7 and 8.

2
Intermadiate paper for grades 9 and 10.

3
Senior paper for grades 11 and 12.

4
89 % of the group gave a correct response; of those 47% were female (shown in brackets).

5
Females comprised 48.5% of grade 7 students who entered the AMC.

The top 2% of students

Data for students in the top 2% of entrants are shown in Table 2. The proportions of

students with correct answers are shown separately by gender, with data for the males

shown in brackets. For each grade level, the proportion of females among those in the top

2% is reported in the last row.
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From the data in Table 2 it can be seen that items again cluster into groups:

• Those on which there is virtually no change (less than 10%) over increasing grade

level in the performance of students:

(1) some of these (e.g., J9/I3, I7/S3, J12/I9 and to a lesser extent J13/I11, J14/I6,

J24/I18, and I21/S16) most students in the top 2% could already solve correctly

in grade 7,

(2) others, e.g., I14/S13, I22/S18, I23/S22, and J25/I24, were solved correctly by

about half the group, broadly independent of grade level,

(3) several items (I26/S26, I29/S28, and J30/I30/S30) remained very difficult for all

students.

• Those on which students improved with increasing grade level, e.g., I8/S5, I10/S8,

and I17/S14.

Table 2

Performance of Top 2% of Students’ on Common Items, by Grade Level and gender

Division &

Item

Grade: %F correct and (%M correct)

J1 I2 S3 7 F (M) 8 F (M) 9 F (M) 10 F (M) 11 F(M) 12 F(M)

9 3 99 (100) 100 (100) 100 (100) 100 (100)

7 3 93 (93) 92 (95) 98 (97) 96 (99)

8 5 72 (77) 85 (79) 87 (89) 89 (94)

12 9 99 (98) 98 (98) 95 (97) 97 (97)

10 8 71 (76) 78 (80) 76 (84) 84 (83)

13 11 84 (88) 88 (90) 89 (92) 90 (94)

14 13 41 (40) 46 (46) 39 (53) 44 (62)

17 14 38 (37) 39 (47) 52 (65) 70 (73)

14 6 84 (89) 89 (87) 83 (85) 82 (86)

24 18 88 (87) 92 (91) 85 (85) 86 (88)

21 16 79 (81) 80 (87) 80 (83) 84 (86)

22 18 49 (51) 50 (51) 46 (49) 48 (39)

23 22 57 (58) 62 (62) 59 (53) 57 (58)

25 24 53 (50) 57 (53) 59 (55) 61 (59)

26 26 8 (9) 11 (12) 7 (10) 10 (13)

29 28 28 (25) 20 (27) 7 (20) 23 (20)

30 30 30 15 (17) 21 (20) 12 (12) 19 (17) 6 (8) 6 (8)

%F in top

2%

32 25 24 19 19 24

It can further be seen that:

• Males outnumbered females in the top group,

• For many of the items, but not all (e.g., J24/I18 and J25/I24), the percentage of

males in the top group with the correct answer was slightly higher than the

corresponding percentage of females.
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Item Descriptions

Selected examples illustrating the different item categories and using the terminology of

Biggs and Collis’ (1982) SOLO taxonomy are shown in Table 3. Items such as J13/I11 and

J24/I18 confirm Gross’s assertion, quoted earlier in the paper, that “in every class of 30

students there would be at least two or three who could work about three years beyond

their age”.

Table 3

Selected Items Illustrative of Different Categories

Item Comment SOLO category

J9/I3 A lesson finished at 10.10

am. If the duration of the

lesson was 55 minutes, it

started at: (A) 9.15 am; (B)

9.45 am; (C) 9am; (D) 8.45

am; (E) 8.30am

Almost all students

solved this correctly

already in grade 7

Readily solved by

applying the

appropriate

algorithm (SOLO

taxonomy: uni-

structural)

J13/I11 Seven consecutive integers

are listed. The sum of the

smallest is 33. What is the

sum of the largest three?

(A) 39; (B) 37; (C) 42; (D)

48; (E) 45

“Average” students

improved with

increasing grade level;

little change for the top

2% - most in grade 7

solved this correctly

Sequential multi-

step problem

(SOLO taxonomy:

multi-structural)

J25/I24 A 3 x 3 square is divided

into nine 1 x 1 unit squares.

Different integers from 1 to

9 are written into these

unit squares. Consider the

pairs of numbers in the

squares sharing a common

edge. What is the largest

number of pairs where one

number is a factor of the

other number? (A) 7; (B) 8;

(C) 9; (D) 10; (E) 12

Little change in

performance with

increasing grade level.

“Average” students

continued to find this

very difficult; about

half of the top 2%

solved this correctly,

irrespective of grade

level

Considerable

integration or

synthesis of

information

required (SOLO

taxonomy:

relational)

Concluding comments

Gender differences in performance are still evident on the AMC papers. Small

differences in performance in favour of males were found consistently for the group as a

whole. Differences in the proportions of female and male entrants who comprised the top

2% were substantial, with males outnumbering females at least 3:1 at each grade level. For

students in the top 2%, males typically - but not invariably - solved common items

correctly more often than their female peers. Nevertheless, reference in this paper to

continuing gender differences should not be allowed to obscure the large overlap in the

performance of males and females, overall and in the top 2%.

Interrogation of the cross-sectional AMC data enabled the performance of students in
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four grade levels to be compared and problems found easy and difficult by different groups

of students to be highlighted. The types of problems identified as more suitable for

“average” students and for the top 2% were not unanticipated. For the former but not the

latter group, students showed improved performance with increasing grade level on

sequential multi structural items. Relational items (Biggs & Collis, 1982) proved suitably

challenging, yet within reach for those in the top group, but quite difficult for the cohort

overall. The AMC data base is clearly a useful and timely resource for those planning

instructional mathematics materials and wishing to cater for individual differences. With

careful planning a balance should be achievable between the requirements of those who

argue with Csikszentmihalyi et al. (1993) that good mathematics students thrive and enjoy

working on challenging materials, and those who are mindful of Barrington and Brown’s

(2005) warning that students avoid subjects they find dauntingly difficult. Whether more

careful matching of students’ capabilities and the prescribed mathematics curriculum will

indeed boost “the number of students studying maths and sciences at school and

university” (Topsfield, 2006, p. 9) requires qualitative and more fine grained information to

supplement that provided through exploration of the data base.
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